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A SOLUTION FOR THE RHIND PAPYRUS UNIT FRACTION
DECOMPOSITIONS

CHARLES DORSETT

ABSTRACT. The long unsolved mystery of a method for constructing the unit
fraction decomposition table in the Rhind Papyrus now has a systematic so-
lution that is consistent with the mathematical processes used in the Rhind
Papyrus. The solution within this paper is the result of work done during the
fall 2006.

1. INTRODUCTION

Most of our knowledge of ancient Egyptian mathematics is derived from two
sizable papyri - the Rhind Papyrus and the Golenischev Papyrus. In 1858 A. Henry
Rhind purchased a partial papyrus in Luxor, Egypt. The papyrus was reportedly
found in Thebes, in the ruins of a building near the Ramesseum. The Rhind
Papyrus was written in hieratic script about 1650 B. C. by a scibe named Ahmes.
Since much of what we know about ancient Egyptian mathematics comes from the
Rhind Papyrus, Ahmes’ work is mathematically and historically significant.

Readers of the papyrus are assured that its content is a likeness of earlier work
dating back to the Twelfth Dynasty, 1849-1801 B. C. Early Egyptian mathemat-
ics with fractions, dating back to the Twelfth Dynasty, was made difficult by the
computational practice of allowing only unit fractions, i.e., fractions of the form
%, where n is a natural number. To overcome the difficulty, the ancient Egyptian
mathematicians constructed unit fraction decomposition tables for quick reference
and use. The table at the beginning of the Rhind Papyrus gives unit fraction de-
compositions of fractions of the form %, where n is an odd natural number between
3 and 103, and is the most extensive of the unit fraction decomposition tables to
be found and preserved among the ancient Egyptian papyri.

As stated within the Rhind Papyrus, the content of the papyrus was to give
a thorough study of all things, insight into all that exists, and knowledge of all
obscure secrets”. However, no insight or knowledge of the construction of the unit
fraction decomposition table was given within the papyrus, leaving its method of
construction an obscure secret. Through the many years, interested people have
tried to solve the mystery of the construction of the Rhind Papyrus unit fraction
decomposition table. Because of the insights and systematic processes that are
included within the Rhind Papyrus, most of the interested people looked for a
systematic process that would give the unit fraction decompositions, but up to
the fall 2006, only patterns within the table were known. For example, it was
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known that fractions within the table of the form 3% follow the general pattern
% = ﬁ + & Prior to the fall 2006, there were unit fraction decompositions that
followed none of the known patterns. I became aware of the long unsolved mystery
during early fall 2006, while teaching a mathematics history class. Given below is
a systematic solution consistent with the content of the Rhind Papyrus obtained
during the fall 2006 that gives all the unit fraction decompositions.

Much of the information above is included in David Burton’s book The History
of Mathematics An Introduction[l]. Additional information about the Rhind Pa-
pyrus and known patterns for entries within the the Rhind Papyrus unit fraction
decomposition table are available in Burton’s book.

2. THE SOLUTION

The ideal decomposition for a fraction within the Rhind Papyrus arithmetic
table would be the sum of two unit fractions with small denominators for best use
of already constructed table entries and that serves most efficiently as a reference
for additional calculations. For a fraction %, the obvious place to start would be
ntl where p was the appropriate natural number, and

to rewrite 2 in the form
n np

gives the unit fraction decomposition % + nip. There is, in fact, historical support
for such a use of “n + 17.

The ancient Egyptian division process gave the unit fraction decomposition %—l—é
for %
% + % = % suggesting that the use of “n 4+ 1”7 could be helpful when looking for
efficient unit fraction decompositions. In addition, the use of n + 1 gives the unit

fraction decompositions at the beginning of the table: % = % = % = %—i— %

and % = % = i—&— 2—18. However, the use of 941 does not give an efficient unit

fraction decomposition for % as seen by % =2 X % = % + %, where the needed unit
fraction decomposition for % was unknown and would remain unknown until much
later in the table. Thus there was a need to adapt the additive process, which led
to the used of 9+o0, where o is an odd natural number between 1 and n. If, in fact,
the creator of the unit fraction decompositions used the 9 + o, trial and error could
have been used to determine the “best” replacement for o. As an alternative, the
creator could have used the information below to more quickly select the “best”
replacement for o.

For % = "7;;" = % + nip = i—’; to be a two term decomposition, o would have to
divide np. If o divides n, then o is a product of prime factors of n, where repetitions
could occur and the product is less than n. Thus consider the case that o does not
divide n. Let s be a prime factor of o. Since o is odd, s is odd. Let u be the natural
number such that o = us. Since s divides o and o divides np, then s divides n or
s divides p. If s divides p, there exists a natural number k such that p = ks, in
which case n = 2p — 0 = 2ks — us = (2k — u)s and s divides n. Hence s divides
n. Since s divides n, n + 0 = n + us = 2p, and s does not divide 2, then s divides
p. Hence s divides both n and p and o is a product of two or more prime numbers
that divide both n and p, where repetitions could occur, the product is less than
n, the product divides np, and the product does not divide n. The value of o that

best satisfies the objectives is selected.

. Using knowledge known by the ancient Egyptian mathematicians, % =+ % =

Application of the above process gives the following table entries: % = % =
Of3 _ 341 _ 2x2 _ 1, 1. 2 _ 2 _ 1545 _ 341 _ 2x2 _ 1 , 1.
6x9 — 2x9  2x9 6 " 18 15 — 3x5 _ 10x15 _ 2x15 _ 3x15 _ 10 ' 30°
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2 _ 2 _ 2147 _ 341 _ 2x2 _ 1 1.2 _ 2 _ 2749 _ 341 _
21 = 3x7  14x21 — 2x21  2x21 14 T 427 27 T 3x3x3 _ 18x27 . 2x27
ox2 1, 1. 2T o TTTa3qar . 341 D oexs 11

5xor — 15 T 50> a0d 33 = 55597 = 55333 = 5wa3 — axa3 — 23 T 6+ Lhe pattern

. . 2 .. 2 . _ 1 1
above continues for fractions of the form = giving = = 555 = 535; = 55 + &5
as cited in Burton’s book.

. : 2 2545 5+1 1 1. 2 _

Moving onward, the process gives % =iz = 15;25 = ﬁ =1t 5 =
2 _ 35425 _ 1 4 1.2 _ 2 _ 4947 _ 1 . 1.2 _ 2 _ 5545 _
5x7 30%35 30 T 120 19 )T 28x49 28 T 306° 55 5x 11 30x55
1, 1.2 2 65418 :7+1.;:2:77+11:i+7,
320 300 65 +?;<13 3963 39 T 1950 77 9ifuié ancrr T a1 T 308
85 — Bx17 _ 51x85 1 + 205’ and 57 = 7573 = Toxor — 70 T 1o; and g5 =
2 954925 _ 1 Ly
5x19 — 60x95 228

The remaining entries in the table are of the form %, where n is prime and
greater than 7. For consistency and the desire for a two fraction decomposition
of 2, start with n+1. If n+1 does not give an efficient decomposition of 3 then
as above, select an odd integer u > 1 and generate p where 2 == ”"'“ == TIfu
divides p, then u would be a candidate for the odd integer o added to n to obtain
the most efficient decomposition for 2 =. If u does not divide p, then for -* 75 tO reduce
to unit fractions, u would have to be written as a sum of decreasing integers all of
which are factors of p. Thus the choice for o would be an odd integer that divides p
and/or can be written as a sum of decreasing numbers all of which divide p, where
for a fixed o, the sum with largest last term would be preferred.

The above technique, when applied to the decomposition for 9—25 given above,

ves : 2 _ 2 _ 95425 _ 1 200 15410 _
gives the more %fﬁment form 95 = B5xI8 — 60x95 — 60 T 60x95 — 60 T 60x95 —
1 1 —

60 T G0x<95 T Goxos — 80 T 380 + 570 found in the Rhlnd Papyrus.

Application of the process gives 121 = élxﬁ = g + %. However, the use of 13+ 1

does not provide an efficient decomposition of 1—23 and the search for the desired odd
integer o greater than 1 would begin. One method for obtaining o would be trial
and error using odd numbers starting with 3 and going to 11, which would be, at
best, tedious; making another method highly desirable.

Let n be prime and sufficiently large. Because for each odd integer 2k: +1
between 1 and n, % = % + - La decomp051t10n of = 2 that efficiently gives k- also
efficiently gives %, making the fractions 2£ the focus of attention for efﬁmency

in calculations. Because of the pattern of behav1or of fractions of the form for

k- i
efficient calculation of % = 2(5), the number p would need a factor of 2 or agfactor
of 3. For efficient calculation of % = 3(%), p would continue to need a factor of 2
or 3. For efficient calculation of & = 4(2), p would need a factor of 3 or 4. For
efficient calculation of 1 = 5(2), p would need a factor of 4 or 6 or 15 starting
with 6. For efficient calculation of 12 = 6(2), p would need a factor of 4 or 6 or 15
starting with 8. For efficient calculation of %, where k is greater than or equal to
7, p would need a factor of 4 or 6 starting with 12. For the entries in the table, the
maximum value of p is 100. Those multiple of 4 or 6 within the limit that have a
factor of 11 or 13 or 17 or 19 or 23 will be less efficient in calculations than other
suitable choices and can be eliminated from consideration.

Using the information above, for -2 13 the con51derat10ns for p are 8 or 12, which

i 2 _ 1343 _ 134241 _ 1
gives 5 = 505 = Ki3t 7—7 3 +1?2 :—3104. 1For i the cons1derations for p are 12
i i 2 _ 1747 _ 174443 _ 1 1 2
or 16, which gives % = 55 = G951+ = 15 T 51 + 68. For 19, 20 < 2p < 38 and

10 < p < 19, giving p = 12,16,0r18 and 2 = 225 = 104842 — 14 L4 L
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2 _ 2341 1 102 29+19
Continued apphcatlon of the process gives 55 = 12;23 =15+ 55 35 241'29
294124443 _ 1 2 _ 3149 _ 314544 _ 1 1 2
X329 — 24+ 58 + 174 + 3330 31 T 20w31 — 20x31 — 20 T 124 T T35 37
37411 _ 374843 _ 1 4 1 4 1 . 2 _ Al4T _ 4l4dd3 L+L+L
2437 24%37 24 T 111 T 20967 24%41 24%41 24 T 246 T 328"
2 _ 43441 _ 4342140446 _ 1 1 4 1 1 2 _ 47413 _ 47+1043
13 42%43 42x43 86 1T 129 T 301 47 30x47 30x 47
Lo 1oy 12 5347 _ 534542 _ 1o 1o 1 2 _ 59413 _ 504044 _
30 7 14T T AT00 53 30%53 30x53 30 T 318 T 7957 59 36x59 36x59
+ pl2 61419 614104544 1 4 14 12 _ 67413 _ 67+8+5
236 5317 61 4061 40X 61 20 T 244 T 610 67 __ 40x67 __ 40x6
Jr 4l 2 749 _ 7ig54d 1o, 1412 _ 73447 _ 73+20+15+12
335 5367 71 — 40x71 40X 71 20 T 568 T 710’ 73 ~ 60x73 40x73
ZL+L+L+L 2 _ 79441 _ 7942041646 _ 1 , 1, 1 , 1 2 _
20 T 219 T 2092 T 3657 79 60x79 60x79 60 T 237 T 316 ' 790’ 83
83437 _ 83415412410 _ L 4 1 4 1 4 1 2 _ 89431 _ 8941541046 _
6083 00x83 60 7 3329”%5 9479—§87+879 6089 | G089
60 356 T 532 T so0r A 97 = 5gx0r = soxor — 56 T g T 7rer

Applying the process to the last entry within the table gives 10% = % =

% = 5—16 + ﬁ + ﬁ, which is not efficient for additional calculations. To
obtain a more efficient decomposition the method above is adapted in a very natural
manner as follows to obtain the last entry within the table: 1% = Wl1 + ﬁ =

1 34241 _
o1 T

6x101 — 101 T 202 T 308 T Go1-

As exhibited in the Rhind Papyrus, the ancient Egyptian mathematicians clev-
erly used “addition” to obtain systematic processes for accomplishing their math-
ematical objectives. Thus the use of “addition” in the solution above is consistent
with the work given within the Rhind Papyrus. The fact that the solution above
gives all the unit fraction decompositions in a unified, systematic manner and that
there is, at last, a pattern that gives the unit fraction decomposition for 2 55> as well
as others, gives further credibility to the solution process Lastly, the fact that the
initial “addition” method above ceased to work for 101, that the method used for
2 was a straightforward adaptation of the earlier process, and that the method

101

used for ﬁ could be applied to all fractions %, where n is odd and greater than 101,
could explain why the table ended with the unit fraction decomposition for 1%.
Whether or not the solution above was used to construct the Rhind Papyrus unit

fraction decompositions, the mystery of more than 3656 years now has a solution.
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